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Abstract

The equations governing the guiding center motion of a charged particle in an electromagnetic field
are obtained simultaneously and deductively, without considering individually the special geometric
situations in which one effect or another occurs alone. The general expression is derived for the guiding
center velocity at right angles to the magnetic field B. This expression contains five terms arising in
the presence of an electric field. They are in addition to the usual “E × B” drift. Because these terms
are unfamiliar objects in the literature on plasmas, they are illustrated by simple examples. Three of the
five drifts occur in rotating plasma machines of the Ixion type. One of these three is also shown to be
responsible for the Helmholtz instability of a plasma. A fourth one gives the (low frequency) dielectric
constant, while the fifth arises if the direction of B is time dependent. A detailed geometric picture of the
fifth drift is given.

The equation governing the guiding center motion parallel to B is also derived for the general time-
dependent field. The conditions are discussed under which it can be integrated into the form of an energy
integral.

Finally the component of current density perpendicular to B in a collisionless plasma is shown to be
the current due to the guiding center drift plus the perpendicular component of the curl of the magnetic
moment per unit volume. Proofs of this have been given in the past for special cases, such as static fields,
∇× B = 0, etc. This proof holds in general, provided conditions for adiabaticity are met. It is also true,
but not proven in this paper, that the component of the current density parallel to B is the current due to
the guiding center velocity parallel to B plus the parallel component of the curl of the magnetic moment
per unit volume. A proper proof of the parallel component is quite lengthy.

I. Introduction

The approximate motion of a charged particle in a slowly varying electromagnetic field has
been extensively studied by means of the guiding center approximation, [1–6] in which the mo-
tion is considered as a perturbation of the helical motion in a uniform static magnetic field. The
guiding center motion is useful, for example, in plasma physics research and in studying the
terrestrial (Van Allen) radiation. The purpose of the present paper is twofold. First, by use of
the intuitive picture of the particle gyrating about a small circle whose center (“guiding center”)
is slowly drifting, a brief and convenient derivation of the guiding center motion is given. This
is done without considering separately special cases in which the various guiding-center drifts
appear alone. Second, the differential equation for the guiding center motion is applied to sev-
eral situations which arise in plasma physics and in machines used for controlled thermonuclear
research.
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Note: This paper was retypeset by Wenyin Wei wenyin.wei@ipp.ac.cn, November 12, 2022, Institute of Plasma Physics,
Chinese Academy of Sciences, Hefei, China.
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The Guiding Center Approximation

II. The Dimensionless Equation of Motion

The smaller the radius of gyration of a particle compared to the size of the system and the
shorter the gyration period compared to the variation time of the fields, the more correct becomes
the picture of a slowly drifting circle. One way of making these two ratios smaller is to reduce
m/e, where m is the rest mass and e the charge of the particle, while holding unchanged the fields
and the initial velocity and position of the particle. The idea of varying the unchangeable m/e of
a given particle, like an electron, may be disturbing at first. One can of course imagine a series of
experiments with a variety of particles. However, it is instructive to show that regarding the m/e
of a given particle as variable is mathematically identical with physically possible experiments
on the particle. To show this, it is only necessary to scale the equation of motion of a charged
particle, and this will be done before proceeding to the guiding center motion. The equation of
motion of a charged particle is

(mc/e)(d/dt)
[

v
(

1 − β2
)−1/2

]
= v × B(r) + cE(r) + (mc/e)g(r) (1)

where r is the particle position at time t, v equals ṙ, β2 equals r2/c2, E and B are the electric
and magnetic fields and g is the total nonelectromagnetic force per unit mass. Let the initial
conditions be that at t = 0, r = r0 and v = ν0v0, where ν0 is a unit vector in the direction of the
initial velocity. To write Eq. (1) in dimensionless form, introduce the dimensionless quantities
B = B(r, t)/B0(t), E = (mc/P0B0) E(r, t), I = P0t/mL, R = r/L, and G =

(
m2L/P0

2) g, where

P0 equals the initial momentum mv0
(
1 − β0

2)−1/2 , B0(t) is the magnetic field at a typical point at
time t, and L is a characteristic dimension of the system. In terms of the dimensionless quantities
Eq. (1) becomes

P0c
eB0L

 d
dI

dR
dI

[
1 −

(
P0

mc
dR
dI

2
)]−1/2

−G

 =
dR
dI

×B+E (2)

with the initial conditions that at I = 0, R = R0/L, and dR/dI = ν0
[
1 + (P0/mc)n]−1/2

=
ν0× rest energy/initial total energy. For a given r0/L and v0, the equation of motion (2) and
associated initial conditions contain the two dimensionless parameters Poc/eB0L and P0/mc =

(v0/c)
(
1 − β0

2)−1/2. In this paper only particles of nonrelativistic energies 1 will be considered.
In the nonrelativistic limit (P0/mc)2 ≪ 1 and Eq. (2) becomes

mcv0

eB0L

[
d2R

dI2 −G(R, I)
]
=

dR
dI

×B(R, I) +E(R, I) (3)

with the initial conditions that at I = 0,R = r0/L and dR/dI = ν̂0.
The solution R(I) of the differential Eq. (3) depends only on the magnitude of mcv0/eB0L for

given dimensionless initial conditions r0/L and ν̂0, and for given dimensionless fields B(R, I),
E(R, I), and G(R, I). Therefore if mcv0/eB0L can be decreased by decreasing v0/B0L instead of
m/e, and at the same time maintaining B, E, G, r0/L, and ν0 unchanged, one has a physically
possible experiment. Three basic ways of doing this will now be described, along with the

1In the absence of electric fields, β is constant and a relativistic particle follows the same trajectory as a nonrelativistic
particle of the same velocity and same total mass. The work of the present paper therefore is applicable. Equations for
the guiding center motion of a particle with relativistic energy in the presence of a small electric field have been given in
Ref. 6. Chandrasekhar and Vandervoort have studied the relativistic case in detail (private communication).
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The Guiding Center Approximation

necessary changes in the quantities in B, E, g, r0, and v0. It is assumed that the experimenter has
these quantities, the time scale, and dimensions of the system under his control.

Firstly, suppose that from one experiment to the next B0(t) is increased by a factor f > 1
at all t, while v0 and L remain unchanged. Since B = B/B0, and since B is to be unchanged,
the magnetic field B(r, t) must be multiplied by f at all places and times. Similarly, since E =
cE/v0B0, the electric field E(r, t) must be increased by f . Since G does not contain B0, the g field
is unchanged, as are the initial position r0 and direction ν0.

Secondly, suppose v1 is decreased by a factor f < 1, while keeping B0 and L unchanged. This
is not so simple as the first case, since the dimensionless time J contains v0. The requirement that
B(R, I) be unchanged in the new experiment for a given I means the time in which B varies
must be increased by the factor 1/ f . Explicitly, B′(r, t) = B(r, f t), where the prime means the
field in the new experiment. For then B′(I) = B′(LI/v′0)/B′

0(LI/v′0) = B(LI/v0)/B0(LI/v0) =
B(I), so that B′(R, I) = B(R, I) as required. The condition that E(R, I) be unchanged
means that E must be reduced by f and the time in which it varies increased by 1/ f — that
is, E′(r, t) = f E (r, f t). The g field must be reduced by f 2 and the time scale increased, so that
g′(r, t) = f 2g(r, f t). Again r0 and ν0 are left unchanged.

Finally, suppose the size L of the system is increased by a factor f > 1, while keeping B0 and
v0 unchanged. In this case r0 must be increased by f so as to keep the initial R unchanged. In ad-
dition, both the time and distance in which E and B change must be increased, so that B′(R, t) =
B(r/ f , f t) and E′(r, t) = E(r/ f , t/ f ). For then B′(R, I) = B′(L′R, L′I/v0)/B′

0(L′R1, L′I/v0) =
B(LR, LI/v0)/B0(LR, LI/v0) = B(R, I) where R1 = r0/L = r0 f /L′. Similarly, E′(R, I) =
E(R, I). The g field must be changed both in magnitude and time scale, so that g′(r, t) =
(1/ f )g(r/ f , t/ f ). The initial direction ν0 is unchanged.

It is apparent that in all three cases the scaling of the various quantities decreases both the
ratio of gyration radius to L, and the ratio of gyration period to the time scale in which the
fields change, just as decreasing m/e does. Hence any one of the four parameters m/e, 1/B0,
v0, 1/L can be used as the parameter which is to be made smaller in order to make the guiding
center equations derived below more closely represent the actual particle motion. In this paper
m/e ≡ ϵ will be used, as Kruskal has done [3]. The advantage of m/e over any one of the other
three parameters (or a combination of them) is that the small quantity ϵ appears explicitly in the
equation of motion of a particle without writing it in dimensionless form, whereas B0, v0, and L,
do not.

III. The Equation of Motion of The Guiding Center

To derive the equation of motion of the guiding center, let r = R + ϱ, where r is the instanta-
neous position of the particle, R is the position of the guiding center, and ϱ is a vector from the
guiding center to the particle (Fig. 1). The vector ϱ can be given a precise definition as is done
in Ref. 5 by the equation ϱ =

(
mc/eB2) B ×

(
v − cE × B/B2), where E and B are evaluated at

r. This combined with r = R + ϱ gives a precise definition of R. To lowest order in ϵ the fields
can of course be evaluated at either r or R, the difference being of order ϵ2 in the equation for ϱ.
Now substitute r = R + ϱ into the nonrelativistic form of Eq. (1). Since the radius of gyration is
proportional to ϵ, terms containing ρ2 can be neglected compared to those in ρ.
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The Guiding Center Approximation

Figure 1: The charged particle and its guiding center

The result of substituting r = R + ρ into the nonrelativistic form of Eq. (1) and expanding the
fields in a Taylor series about R is†

R̈ + ϱ̈ = g + (e/m)

{
E(R) + ϱ · ∇E(R)

+ (1/c)(Ṙ + ϱ̇)×
[
B(R) + ϱ · ∇B(R)

]}
+ o(ϵ).

(4)

The term (ϱ̇/c) × ϱ · ∇B(R) must be retained in Eq. (4); as will become apparent shortly, this
term is not of order ϵ2 but is of order ϵ. Now define three orthogonal unit vectors: let e1 equal
B/B, let e2 be a unit vector directed towards the center of curvature of the line of force, and let e3
be e1 × e2, a unit vector along the binormal. In order to correspond to the picture of the particle
moving about a circle of radius ρ, let ϱ = ρ (e2 sin θ + e3 cos θ), where θ =

∫
ωdt, ω being the

gyro frequency eB(R)/mc. Then ϱ̇ = ωρ (e2 cos θ − e3 sin θ) + (ρe2)
· sin θ+ ( ρe3)

· cos θ. The first
term contains ωρ and is of zero order in ϵ, since ω ∼ 1/ϵ and ρ ∼ ϵ. The second and third
terms contain ρ or ρ̇ and are of order ϵ. The reason for retaining ϱ̇ × (ϱ · ∇)B in Eq. (4) is now
formally apparent, since it is of order ϵ, whereas a term such as (ϱ · ∇)2E in the Taylor expansion
is of order ϵ2. A second differentiation gives ϱ̈ = −

[
ω2ρ (e2 sin θ + e3 cos θ)

]
+ ω̇ρ [e2 cos θ−

e3 sin θ] + 2ω
[
(ρe2)

· cos θ − (ρe3)
· sin θ

]
+
[
(ρe2)

·· sin θ + (ρe3)
·· cos θ

]
, the four terms being of

order 1/ϵ, 1, 1, and ϵ, respectively. These expressions for ϱ, ϱ̇, ϱ̈ and are now substituted into
Eq. (4) and the resulting equation time-averaged over a gyration period, by taking

∫ 2π
0 (· · · ) dθ

and considering coefficients, such as (ρe2)
·, to be constants. Then ⟨ϱ⟩ = ⟨ϱ̇⟩ = ⟨ϱ̈⟩ = 0, where

the angular brackets denote the average. The result of time-averaging Eq. (4) is

R̈ = g(R) +
e
m

[
E(R) +

Ṙ
c
× B(R)

]
+

e
mc

ρ2ω

2

[
e2 × (e3 · ∇) B − e3 × (e2 · ∇) B

]
+ o(ϵ),

(5)

†Note by Wenyin: the little-o notation used by Northrop in the original paper is in fact the modern big-O notation
rather than little-o. One writes f (x) = o(g(x)) as x → a ∈ R if for any positive constant M there exists a constant δ such
that | f (x)| ≤ Mg(x) for all 0 < |x − a| ≤ δ. On the other hand, f (x) = O(g(x)) as x → a ∈ R if there exist positive
constants M and δ such that | f (x)| ≤ Mg(x) for all |x − a| ≤ δ. In the repolished (not retypeset) version, little-o s have
been changed to big-Os.
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since
⟨ϱ̇ × (ϱ · ∇)B⟩ =

(
ρ2ω/2

) [
e2 × (e3 · ∇) B − e3 × (e2 · ∇) B

]
. (6)

The coefficient ρ2ω/2 is an approximate invariant of the motion and is Mc/e, where M is the
well-known magnetic moment. That M is an adiabatic invariant of the particle motion has been
demonstrated in Ref. 3 and in numerous other places. Equation (5) has essentially been derived
by Kruskal.2

The right-hand side of Eq. (6) can be simplified as follows:

e2 × (e3 · ∇) B = (e3 × e1)× (e3 · ∇) B = e1 [e2 · (e3 · ∇) B]− e3 [e1 · (e3 · ∇) B] (7)

Now
e1 · (e3 · ∇) B = e1 · (e3 · ∇) (e1B) = (B/2) (e3 · ∇) e1

2 + e3 · ∇B = e3 · ∇B, (8)

since e1
2 = 1. Therefore Eq. (7) becomes

e2 × (e3 · ∇) B = e1 [e3 · (e3 · ∇) B]− e3 (e3 · ∇) B. (9)

Similarly
e3 × (e2 · ∇) B = −e1 [e2 · (e2 · ∇) B] + e2 (e2 · ∇) B. (10)

The fact that ∇ · B = 0 must now be used. The operator ∇ can be expressed as

e1 (e1 · ∇) + e2 (e2 · ∇) + e3 (e3 · ∇) ,

so that
∇ · B = e1 · (e1 · ∇) B + e2 · (e2 · ∇) B + e3 · (e3 · ∇) B = 0.

But
e1 · (e1 · ∇) B = e1 · ∂B/∂s = ∂B/∂s,

where s is distance along the line of force. Therefore by subtracting (10) from (9) and using
∇ · B = 0, one obtains

e2 × (e3 · ∇) B − e3 × (e2 · ∇) B

= −e1(∂B/∂s)− e2 (e2 · ∇) B − e3 (e3 · ∇) B = −∇B.
(11)

2The derivation of the guiding center equation in the present paper is intuitive rather than mathematically rigorous.
The work of Kruskal [9] and of Berkowitz and Gardner [4] constitute the rigorous justification for the averaging process
used to get Eq. (5). Kruskal derives equations for the Rn appearing in a series of the form

r =
∞

∑
−∞

ϵ|n|Rn(t) exp
(

in
∫

ω (R0)dt
)
≡ R0 +

∞

∑
1

ϵn
(

αn sin n
∫

ωdt + βn cos n
∫

ωdt
)

by the formal process of equating coefficients of equal powers of exp
(
i
∫

ωdt
)
. The equation for R0 is just Eq. (5). It is

not immediately obvious that Kruskal’s procedure of equating coefficients is justified, for the coefficients Rn are functions
of time so that this is not simply a Fourier series. However, Berkowitz and Gardner provide the justification by proving
that this series is indeed the asymptotic expansion of r for small ϵ. The series is actually a generalization of a WKB series
to the case of a nonlinear differential equation. The guiding center R, as defined at the start of Section III, differs from R0
by o

(
ϵ2). R = R0 + o

(
ϵ2). This difference is of no consequence here, since we consider only effects that are first order in

the radius of gyration.
The general asymptotic theory of systems of ordinary differential equations with nearly periodic solutions has been

studied by Bogoliubov and Zubarev [7] and by Kruskal [7] in a book which is a collection of lectures given at the summer
school of theoretical physics at Les Houches in the summer of 1959. In each work the general theory has been illustrated
by the equation of motion of a charged particle. Bogoliubov obtains the longitudinal equation of motion (20) and the drift
velocity (17) for the case where uE is o(ϵ). Kruskal’s emphasis is on the adiabatic invariants.
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The Guiding Center Approximation

The time average of Eq. (4) then is

R̈ = g(R) + (e/m)[E(R) + (Ṙ/c)× B(R)]− (M/m)∇B(R) + o(ϵ), (12)

with an initial velocity Ṙ(0) equal to
[
e1e1 · v +

(
cE × B/B2)]

t=0 + o(ϵ). Equation (12) is the
basic differential equation for the guiding center motion. Hellwig [2] has given a similar but
more lengthy derivation of it. It is the same as the equation of motion of a particle in a magnetic
field B and an equivalent electric field E − (M/e)∇B, and therefore for numerical integration is
more complicated than was the original equation of motion (1). If a numerical solution of (12)
were performed, it would be found that the guiding center R travels in roughly a helix about
the field line, just as the particle does. However, it can be shown that the radius of this helix is
one order of ϵ smaller than the radius of gyration of the particle, as would be expected for the
guiding center. This small amplitude oscillation of the guiding center is to he ignored, since it is
of order ϵ2 and of no significance in a first-order theory. Furthermore in the preceding analysis
other terms of this order have been neglected. In the next section Eq. (12) will be solved by
iteration to obtain the equations for the guiding center motion parallel and perpendicular to B.
These coupled equations do not show the rapid guiding center spiralling that Eq. (12) does.

IV. The Drift Velocity And The Longitudinal Motion

The differential equation for the guiding center motion ean be separated into components
parallel and perpendicular to B. Crossing Eq. (12) on the right with e1(R) gives the perpendicular
component of the vector equation as

Note by Wenyin:
Ṙ − e1 · Ṙ = Ṙ⊥ is a
typo, which should

be Ṙ − e1e1 · Ṙ
instead.

Ṙ − e1 · Ṙ = Ṙ⊥ =
cE × e1

B
+

Mc
e

e1 ×∇B
B

+
mc
e

(g − R̈)× e1

B
+ o

(
ϵ2
)

, (13)

where Ṙ⊥ is the component of Ṙ perpendicular to e1(R). It is called the drift velocity. The first
term is the usual “E × B” drift. The second term is the “gradient B” drift, and the third is the
“acceleration drift”. By dotting Eq. (12) with e1(R) one obtains the scalar parallel component as

m
e

R̈ · e1 =
m
e

g · e1 + E · e1 −
M
e

∂B
∂s

+ o
(

ϵ2
)

. (14)

In Eq. (13) the guiding center acceleration R̈ is needed to calculate the drift velocity; but because
the term in which it occurs already contains ϵ as a coefficient, R̈ is needed only to zero order in ϵ.
It is assumed that R̈ is not of negative order, such as ∼ 1/ϵ. If it were of negative order, the fields
would change by a large amount in a gyration period when ϵ is small, and the guiding center
picture would not be valid. Neither would M be an adiabatic invariant (see Ref. 3).

The acceleration R̈ = dṘ/dt = (d/dt)
(

Ṙ⊥ + e1Ṙ · e1
)
, and dṘ⊥/dt can be obtained to zero

order in ϵ from Eq. (13) as

dṘ⊥/dt = (d/dt) (cE × e1/B) + o(ϵ).

Only the first term in the drift is needed, since the third term is ∼ ϵ and the second term contains
M/e = m(ρω)2/2eB ∼ ϵ. If the perpendicular electric field happens to be of order ϵ instead of
zero order, the retention of cE × e1/B ≡ uE would be unnecessary in the calculation of R̈. The
acceleration then is

R̈ = (d/dt)Ṙ = (d/dt)
(

v∥e1 + uE

)
+ o(ϵ) (15)
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R̈ − o(ϵ) =e1
dv∥
dt

+ v∥
de1

dt
+

duE
dt

=e1
dv∥
dt

+ v∥

[
∂e1

∂t
+
(

e1v∥ + uE

)
· ∇e1

]
+

[
∂uE
∂l

+
(

e1v∥ + uE

)
· ∇uE

]

=e1
dv∥
dt

+ v∥
∂e1

∂t
+ v2

∥
∂e1

∂s
+ v∥uE · ∇e1 +

∂uE
∂t

+ v∥
∂uE
∂s

+ uE · ∇uE

(16)

where v∥ means Ṙ · e1(R). Other “parallel” velocities can be defined, such as v · e1(r) or v · e1(R),
but in this paper v∥ always stands for Ṙ · e1(R). The first term is the tangential acceleration, the
third is the centripetal acceleration, the second occurs in nonstatic fields, where the direction of
the line of force changes with time, while the last four terms occur in the presence of a zero-order
electric field. Again it should be stated that the presence of a “zero-order electric field” means
that in a series of experiments in which m/e is successively reduced, the electric field is held
constant. The electric field is of order ϵ if it is reduced in proportion to m/e. Whether the ∂e1/∂t
term need be retained or not depends on how the time in which fields vary is to be scaled in the
series of experiments. If the time scale is held constant, then ∂/∂t is of zero order and ∂e1/∂t
contributes a first-order drift. If the time scale is increased in proportion to 1/ϵ, then ∂/∂t is of
order ϵ and ∂e1/∂t is not needed.

With expression (16) for R̈, Eq. (13) for the drift becomes

Ṙ⊥ =
e1

B
×
{
−cE +

Mc
e

∇B +
mc
e

[
−g + v∥

∂e1

∂t
+ v2

∥
∂e1

∂s
+ v∥uE · ∇e1

+
∂

∂t
uE + v∥

∂

∂s
uE + uE · ∇uE

]}
+ o

(
ϵ2
)

,
(17)

where uE = cE × e1/B. These drift terms will be illustrated by examples in Section V.
The longitudinal Eq. (14) shows E∥ = E · e1 must be of order ϵ if R̈ is to be of non-negative

order. Thus in contrast to E⊥, which may be of zero order, E∥ must be of order ϵ. If this were not
so, the parallel acceleration would be ∼ 1/ϵ.

Equation (14) can be put in a form more useful for obtaining an energy integral by rewriting
R̈ · e1 as

R̈ · e1 = (d/dt)
(

Ṙ · e1
)
− Ṙ · ė1 = (dv∥/dt)− Ṙ · ė1 (18)

and noting that

Ṙ · ė1 =
(

e1v∥ + uE + o(ϵ)
)
· ė1 = uE · ė1 + o(ϵ)

=uE ·
[
(∂e1/∂t) +

(
e1v∥ + uE

)
· ∇e1

]
+ o(ϵ).

(19)

In Eqs. (18) and (19) we consider only the contribution of the zero order motion to d/dt. This is
all that is required, since R̈ · e1 has ϵ for a coefficient in Eq. (14). The longitudinal Eq. (14) then
becomes

m
e

dv∥
dt

=
m
e

g∥ + E∥ −
M
e

∂B
∂s

+
m
e

uE ·
(

∂e1

∂t
+ v∥

∂e1

∂s
+ uE · ∇e1

)
+ o

(
ϵ2
)

. (20)
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Equations (17) and (20) are equivalent to the original differential Eq. (12). 3

Let us now introduce a true curvilinear coordinate system (α, β, s) such that α(r, t) and β(r, t)
are two parameters specifying a line of force and therefore constant on it; s is distance along the
line as previously. For a divergence-free field such as B, α, and β can be chosen so that the vector
potential is A = α∇β. Then

E∥ = e1 ·
(
−1

c
∂A
∂t

−∇φ

)
= − ∂

∂s
(ψ + φ), (21)

where ψ = (α/c)(∂β/∂t). Now the rate of change of φ + ψ due to zero order motion and time-
dependent fields is

d(ψ + φ)

dt
=
(

e1v∥ + uE

)
· ∇(ψ + φ) +

∂(ψ + φ)

∂t

= v∥
∂(ψ + φ)

∂s
+ uE · ∇(ψ + φ) +

∂(ψ + φ)

∂t

(22)

so that

v∥E∥ = −v∥
∂(ψ + φ)

∂s

= −d(ψ + φ)

dt
+ uE · ∇(ψ + φ) +

∂(ψ + φ)

∂t
+ o

(
ϵ2
)

.
(23)

Similarly

v∥
∂B
∂s

=
dB
dt

− uE · ∇B − ∂B
∂t

. (24)

When E∥ and ∂B/∂s are eliminated from Eq. (20) by use of Eqs. (23) and (24), the result is

d
dt

(
m
2e

v2
∥ +

M
e

B + ψ + φ

)
=

m
e

g∥v∥ + uE ·
[
∇
(

M
e

B + ψ + φ

)

+
m
e

v∥

(
∂e1

∂t
+ v∥

∂e1

∂s
+ uE · ∇e1

)]

+
∂

∂t

(
M
e

B + ψ + φ

)
+ o

(
ϵ2
)

,

(25)

a form which will be useful in the applications of the next section. If the g field can be derived
from a potential, this potential will appear added to

(M/e)B + ψ + φ

and the (m/e)g∥ term will be absent in Eq. (25).

3The experimental physicist may at this point ask how he is to know whether the electric field drift. uE is o(1) or o(ϵ)
in a given piece of experimental equipment. Or differently asked, at how many volts per meter electric field does his uE
become o(1) instead of o(ϵ), thus requiring him to retain terms with uE in Eqs. (17) and (20). The answer is that it never
in principle is wrong to keep these terms. For the given experiment they may be much less than the other terms, in which
case they could have been omitted. The guiding center equations are merely guides to what the particle may be expected
to do. The equations are derived from an asymptotic series, and therefore become better predictions of the actual particle
motion as the expansion parameter ϵ is decreased. How good predictions they are in any particular experiment could be
determined by comparison with a detailed numerical solution of the particle orbit, or less accurately by looking at the
magnitude of next higher order terms.
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The Guiding Center Approximation

V. Applications

A. Dielectric Constant of a Plasma

Figure 2: Polarization of a plasma is caused by the component of guiding center drift parallel to the electric field.

Suppose there is a uniform magnetic field out of the page (Fig. 2) and a spatially uniform but
time-dependent electric field at right angles. From Eq. (17), if ∂/∂t ∼ 1 and E⊥ ∼ 1,

Ṙ⊥ =
cE × e1

B
+

mc
eB

e1 ×
∂

∂t

(
cE × e1

B

)
=

cE × e1

B
− mc2

eB2 e1 ×
(

e1 ×
∂E
∂t

)
=

cE × e1

B
+

mc2

eB2
∂E
∂t

.
(26)

Because the average position of a particle is its guiding center, the polarization of the medium
can be obtained from the displacement of the guiding center in the direction of the E field — that
is, ∫ t

0
dt Ṙ⊥ · e3 =

mc2

eB2

∫ t

0
e3 ·

∂E
∂t

dt =
mc2

eB2 ∆E, (27)

where ∆E is the change in the magnitude of the field from time zero to t. The polarizability is
then, χ = nmc2/B2, where n is the ion density. The electrons have a negligible polarizability,
since the electron mass is much less than the ion mass. The dielectric constant κ is

κ = 1 + 4πχ = 1 +
(

4πnmc2/B2
)

. (28)

Another way to derive χ is from energy considerations. The kinetic energy for the increase in the
first term of Eq. (26), the E × B drift, must be supplied by motion in the direction of the E field.
Then

(m/2)∆(cE/B)2 = eE
∫ t

0
dt Ṙ⊥ · e3, or

∫ t

0
dt Ṙ⊥ · e3 =

(
mc2/eB2

)
∆E

as in Eq. (27).

9



The Guiding Center Approximation

B. Magnetic Mirror Reflection when Electric Fields are Small

Figure 3: Magnetic mirror machine

Consider a magnetic mirror geometry (Fig. 3) in which the fields are static or slowly varying
(∂/∂t ∼ ϵ) and in which E⊥ is of order ϵ, so that uE ∼ ϵ. The guiding center velocity Ṙ then is
to lowest order e1v∥ along a line of force. In Eq. (25), the entire right-hand side then is of o(ϵ2).
For φ must be ∼ ϵ of both E⊥ and E∥ ∼ ϵ. Also ψ = (α/c)(∂β/∂t) ∼ ∂/∂t ∼ ϵ. Thus Eq. (25)
becomes (whether there is rotational symmetry or not)

(m/2)v2
∥ + MB + e(ψ + φ)

equals a constant of the zero-order
motion along the line of force. 4 (29)

The particle reflects when v∥ = 0, which occurs at a field BT defined by MBT + e (ψT + φT) =
the constant of the motion.

If the magnetic field is stalic, ψ = 0, and Eq. (29) is merely the conservation of total energy
H =

(
mv2/2

)
+ eφ. If there are no electric fields so that ψ = φ = 0, the familiar restult for a

mirror machine is obtained: BT = H/M = Bc/ sin2 δ, where δ is the angle between the velocity
vector and the field line at the median plane, and Bc is the field there.

C. Limiting Time of Oscillation between Mirror Points

For small amplitude oscillations about the median plane of Fig. 3, B ∼= Bc +
(
s2/2

)
B′′

c , where
s = 0 at the median plane and B′′

c is
(
d2B/ds2) s = 0. Equation (20) is d2s/dt2 = −(M/m)B′′

c s,
which is the equation of motion of a harmonic oscillator with period 2π (m/MB′′

c )
1/2 = (2π/v) (2Bc/B′′

c )
1/2.

D. Magnetic Mirror Reflection when the Electric Field is Large

In this section the reflection properties of a magnetic mirror will be determined for the case
where E⊥ is of zero order. If E⊥ is of zero order in ϵ, the right-hand side of Eq. (25) stands, with
no apparent simplification possible in general. However, in at least one special case the equalion

4The relativistic form of Eq. (29) is shown in Ref. 6 to be
(

P2c2 + m0
2c4)1/2

+ e(ψ + φ) = constant of the zero-order
motion.

10



The Guiding Center Approximation

can be written in the form of an energy integral. This is the ease of a static magnetie field with
rotational symmetry (such as a mirror machine), and a static E, where E⊥ has no azimuthal
component and E∥ = 0 (Fig. 4). Such a mirror machine has been named Ixion, and is discussed
by Longmire et al. [8]. Wilcox [9] has reviewed experimental results obtained with Ixion and
similar machines. The zero-order drift uE is in the azimuthal direction; the component parallel
to B of the resulting radial centrifugal foree mu2

E/r has the desirable property of making it more
difficult for the particle to escape at the ends. The effect is just that which would be observed if
a bead were placed on a smooth wire bent in the shape of the line of force, and the wire then
rotated about the z axis. This analogy will become apparent in the following analysis, which is
quite different in method from that of Ref. 8, but leads to the same results.

Under the specified restriction on the E and B fields, all terms on the right side of Eq. (25)
vanish except the one containing uE · (uE · ∇) e1, which in this special case equals (cE/B)2e3 ·
(e3 · ∇) e1. Because e3 · e1 = 0, the factor e3 · (e3 · ∇) e1 equals −e1 · (e3 · ∇) e3. But (e3 · ∇) e3 =
−er/r, where er is a unit vector in the radial direction. Therefore −e1 · (e3 · ∇) e3 = e1 · er/r.

Figure 4: Mirror machine with large electric field

In order to integrate (cE/B)2(e1 · er/r) over the zero-order motion on a flux surface (defined
as the surface formed by revolving a line of force about z), the variation of cE/B and e1 · er/r
with longitudinal position must be known. The following is a proof that cE/rB is independent
of position on a flux surface. Iet Ψ(r, z) be the stream function [10] for the magnetic field; the
stream function has the property that Ψ = constant is the equation of a line of force and that
Bz = (1/r)∂Ψ/∂r and Br = −(1/r)∂Ψ/∂z. Since E is perpendicular to B, flux surfaces are also
equipotentials and φ is therefore a function of Ψ. The components of electric field are

Er = −∂φ/∂r = −(dφ/dΨ)∂Ψ/∂r and Ez = −(dφ/dΨ)∂Ψ/∂z

Thus E =
[
(∂Ψ/∂r)2 + (∂Ψ/∂z)2]1/2 dφ/dΨ = rB(dφ/dΨ) and cE/rB = cdφ/dΨ, which is

constant on a flux surface. The quantity cE/rB is the angular velocity of the uE drift about z and
will be denoted by Ω. Therefore the term containing uE · (uE · ∇) e1 in Eq. (25) is (m/e)v∥Ω2re1 ·
er, which equals (m/e)(d/dt)

(
Ω2r2/2

)
, because

11



The Guiding Center Approximation

1
2

d
dt

(
Ω2r2

)
=

Ω2

2
dr2

dt
= Ω2r

dr
dt

= Ω2r
(

e1v∥ + uE

)
· ∇r

= Ω2v∥r
∂r
∂s

= Ω2u∥r (e1 · er) .
(30)

The dφ/dt term on the left side of Eq. (25) vanishes, since the zero-order motion is on an equipo-
tential surface. The integral of Eq. (25) is then

mv2
∥/2 + MB − mΩ2r2/2

equals a constant of the zero-order
motion on the flux surface.

(31)

Equation (31) has been derived in a different fashion by Chandrasekhar et al. [11], and in yet a
third way in Ref. 8.

If the subscript c designates quantities at the median plane of Fig. 4 and e at the mirror (i.e.,
at the location of maximum magnetic field on the flux surface), Eq. (31) becomes

v2
∥e = ν2

∥c + (2MBc/m) (1 − Be/Bc)− Ω2r2
c

(
1 − r2

e /r2
c

)
. (32)

In Ref. 3 Kruskal shows that if uE ̸= 0, MB equals mv⊥2/2B, where v⊥ is the perpendicular
velocity in the frame of reference moving at velocity uE. Also Be/Bc equals the mirror ratio on
the flux surface. Equation (32) therefore says that v2

∥e ≦ 0 — i.e., the particle is contained, if

v2∥2
c ≦ v2

⊥c [(Be/Bc)− 1] + u2
Er

(
1 − r2

e /r2
c

)
. (33)

If in addition the magnetic field is assumed to be approximately independent of radius both
in the median plane and at the mirror, then by conservation of flux r2

e /r2
c = Bc/Be in Eq. (33).

However this assumption is not necessary for the validity of the adiabatic theory and Eq. (33).
If in Eq. (32) M is set equal to zero, the change in parallel kinetic energy between the median

plane and the mirror is (m/2)Ω2 (r2
c − r2

e
)
, which is just the work done against the centrifugal

force. Thus when M = 0, the problem is that of the bead sliding on the wire described previously.
Terms containing uE in the drift Eq. (17) give a small (order ϵ) motion in or normal to a flux

surface, the zero-order velocity being Ṙ = e1v∥ + uE in the surface. When crossed with e1/B, the
third term in the square brackets is the usual drift due to line curvature and is in the azimuthal
direction. If E is outward as in Fig. 4, the fourth term is

−v∥
cE
B

e3 · ∇e1 = −v∥Ω
∂e1

∂θ
= −v∥Ω

∂

∂θ
(erer · e1 + ezez · e1) = −v∥Ωe3 (er · e1) ,

where θ is the azimuthal angle in cylindrical coordinates and ez is a unit vector in the z direction.
When crossed with e1, this fourth term gives a drift normal to the flux surface. The sixth term in
brackets is

v∥ (∂uE/∂s) = −v∥(∂/∂s) (Ωre3) = −v∥Ωe3(∂r/∂s) = −v∥Ωe3 (er · e1) ,

hence is the same in this geometry as the fourth term. The last term in the square brackets is

Ωre3 · ∇ (Ωre3) = Ω2r2 (e3 · ∇) e3 = −Ω2rer.

When crossed with e1 this last term gives another order ϵ drift in the surface, in addition to the
∇B and line curvature drifts.

Because of the two order ϵ drift terms perpendicular to the flux surface, there is an order ϵ
change in φ (and therefore of kinetic energy) as the particle traverses the surface. This change in

12
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φ can be calculated directly from the product of the drift velocity normal to the surface and the
electric field

dφ

dt
= 2

e1

B
×
[
−mc

e
v∥Ωe3 (er · e1)

]
· (−E)

=
2mc
eB

v∥Ω
∂r
∂s

e1 · (e3 × E)

= −2mc
eB

v∥Ω
∂r
∂s

E = −2m
e

v∥Ω2r
∂r
∂s

.

(34)

Or integrating
∆(eφ) = −mΩ2∆

(
r2
)
= −m∆

(
u2

E

)
. (35)

The change in eφ caused by the first-order drift off the surface equals twice the change in (m/2)u3
E

as the particle moves in zero order on the surface. This result can also be obtained by energy
conservation. The total average energy associated with the perpendicular motion is MB+mu2

E/2.

Therefore
(

mu2
∥/2

)
+ MB +

(
mu2

E/2
)
+ ϵφ is a constant of the zero plus first-order motion. But

from Eq. (31) (m/2)v2
∥ + MB − (m/2)uE

2 is a constant of the zero-order motion. By subtraction

∆(eφ) = −2∆
(
muE

2/2
)
.

This drift normal to the flux surface is not cumulative, since the sign of v∥ reverses when the
particle reflects near the mirror.

E. The Current in a Collisionless Plasma

It will be proven in this section that the current density perpendicular to the magnetic field in
a collisionless plasma is given by

j⊥ = neṘ⊥ + c (∇×M)⊥ , (36)

where Ṙ⊥ is the drift velocity at the point where j⊥ is required and is given by Eq. (17), n is
the density of guiding centers, and M = −nMe1 is the magnetic moment per unit volume of
particles having guiding centers at the required point. Equation (36) applies only to a single class
of particle, that is, to particles which all have the same magnetic moment M and parallel velocity
at the point where j⊥ is to be calculated. This is because Ṙ⊥ at a given point is a function of M
and v∥. If several classes of particless are present, their currents can be superposed to give a total
current

J⊥ = NeṘ⊥ + c
(
∇×M

)
⊥ , (37)

where Ṙ⊥ and M are the average drift velocity and magnetic moment per unit volume. It is
therefore only necessary to prove Eq. (36).

It may be argued that Eq. (36) requires no proof since the first term is the current due to the
motion of the guiding centers, and the socond term is the usual current due to the magnetization
of a medium — i.e., due to the motion about the guiding center (see Longmire [12], for exam-
ple, for a proof). However, it seems desirable to demonstrate formally the validity of Eq. (36),
especially for the general case where there is a zero-order drift due to the electric field, and a
nonsteady state.
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The starting point in the proof is the Boltzmann equation, from which can be derived (Ref. 13,
p. 94) the macroscopic equation of motion

nm dV/dt = −∇ · P + ne(V × B/c) + neE, (38)

where V = v is the average particle velocity and P is the pressure tensor, given by P = nm⟨(v −
V)(v − V)⟩Av. In Ref. 14 it is shown that for strong magnetic fields (i.e., for adiabatic particle
motion) that P is diagonal with two of the diagonal components equal.

P = P∥e1e1 + P⊥ (e2e2 + e3e3) , (39)

where P∥ = nm
⟨(

v∥ − V∥

)2
⟩

Av
and P⊥ = (nm/2)

⟨
v2
⊥
⟩
= nM̄B and v⊥ is the perpendicular

velocity in the frame moving at V . The divergence of P is given in Ref. 15 as

∇ · P = e1

∂P∥
∂s

−

(
P∥ − P⊥

)
B

∂B
∂s

+

[(
P∥ − P⊥

) ∂e1

∂s
+∇⊥P⊥

]
, (40)

where ∇⊥ = e2 (e2 · ∇) + e3 (e3 · ∇). Since only a single class of particles is to be considered here,
P∥ = 0 and P⊥ = (nm/2) v2

⊥ = nMB.
Next solve Eq. (38) for V by crossing it with e1:

† Note by Wenyin:(
mc/qB2

)
in the

original paper is a
typo, which should
be (mc/qB).

V = V∥ +
ce1 ×∇ · P

neB
+

cE × e1

B
+
( mc

eB2

)†
e1 ×

dV
dt

. (41)

Since the last term has ϵ in the coefficient, an iterative procedure can be used and dV/dt replaced
by its value for ϵ = 0. When ϵ = 0, the particle has zero radius of gyration, and the average
velocity V is simply the zero-order guiding center motion V = e1v∥ + uE. With this expression
for V and with Eq. (40) for ∇ · P with P∥ = 0, Eq. (41) becomes

V = V∥ +
c

neB
e1 ×

(
−P⊥

∂e1

∂s
+∇⊥P⊥

)
+

cE × e1

B
+
( mc

eB2

)†
e1 ×

d
dt

(
v∥e1 + uE

)
,

(42)

The expanded expression for
[
d
(

v∥e1 + uE

)]
/dt given in Eq. (16) is not needed here. The

last two terms of Eq. (42) contain all guiding center drifts except the one due to ∇B, which is
contained along with (∇×M)⊥ in the second term:

∇×M =−∇× (Mne1) = −Mn∇× e1 + e1 ×∇(Mn)

=− (P⊥/B)∇× e1 + e1 ×∇ (P⊥/B) = − (P⊥/B)∇× e1 + e1 × (1/B) {∇P⊥ − (P⊥/B)∇B}
=− (P⊥/B) [e1 × (∂e1/∂s) + e2 × (e2 · ∇) e1 + e3 × (e3 · ∇) e1]

+ e1 ×
{
(1/B)∇P⊥ −

(
P⊥/B2

)
∇B
}

(43)
The second and third term in the square brackets are parallel to e1, as can be seen by taking

their cross products with e1 and observing that e1 · (e2 · ∇) e1 and e1 · (e3 · ∇) e1 both are zero.
Therefore from Eq. (43)

(ce1/B)× [−P⊥ (∂e1/∂s) +∇⊥P⊥] = c(∇×M)⊥ + (cP⊥/B) e1 ×∇B

= c(∇×M)⊥ + nMce1 ×∇B
(44)
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and Eq. (42) becomes, since j = neV

j = neV∥ + neṘ⊥ + c(∇×M)⊥ = j∥ + neṘ⊥ + c(∇×M)⊥

which is the same as Eq. (36). This result has also been derived in Eq. (121) of Ref. 11 for the
sperial case of static fields.

It is also true that j∥ = nev∥e1 + c(∇×M)∥. The proof is not so simple as for the perpendic-
ular current density. It is necessary to work with the Boltzmann equation itself, rather than from
one of its moments such as Eq. (38). Since the rigorous proof is quite lengthy, it will not be given
in the present paper. The proof actually gives:

J = Ne
⟨(

Ṙ⊥ + v∥
)⟩

Av
+ c(∇×M), (45)

which contains both the parallel and the perpendicular components, but it is a very much more
difficult demonstration of the perpendicular component than presented here. N is the total
guiding renter density.

From Eq. (45) it can be seen that the current density cannot be determined from a knowl-
edge of the guiding center motion alone. However, the rate of charge accumulation due to the
divergence of the current density can be found from the guiding center motion alone, since

∂(Ne)/∂t = ∇ · J = −∇ ·
[

Ne
⟨(

Ṙ⊥ + e1v∥
)⟩

Av

]
.

The fact that ∇ · J ean be determined from the guiding center drifts alone is used in the next
example.

F. The Particle Drift Explanation of Helmholtz Instability of a Plasma

It is instructive to explain in terms of particle motion why a given plasma instability occurs.
This has been done for Rayleigh-Taylor (i.e., gravitational) plasma instability [16] by Rosenbluth
and Longmire [5]. They have shown how the guiding center drifts result in a regenerative increase
in amplitude of a small sinusoidal perturbation of the plasma-vacuum interface. The Helmholtz
instability of such an interface has been studied by the author [17] via the hydromagetic equations,
without a detailed analysis of the particle motions. The particle drift explanation will now be
given for a somewhat simpler case than in Ref. 17, where one “fluid” was a vacuum magnetic
field and the other a plasma with a pressure. A simpler example of Helmholtz instability occurs
when two identical pressureless plasmas with the opposite velocities v0 and −v0 are separated
by a sharp boundary (Fig. 5). There must be an electric field E0 = (v0/c) B0 which produces the
flow. There is a uniform surface charge on the interface.

Suppose that the interface is perturbed sinusoidally with an amplitude A, a wave number
l, and with the surface charge density unchanged. The electric field is then also perturbed in
such a way that the flow remains parallel to the boundary. It can be verified that the solution of
∇ · E = 0 for the perturbed electric field E is (in the upper plasma)

Ex = −E0 Ale−ly cos lx + o
(

A2
)

,

Ey = E0

(
1 + Ale−ly sin lx

)
+ o

(
A2
)

.
(46)

This is the field due to a uniform charge on a surface bent sinusoidally. The terms of o(A2) are
not needed. From Eq. (46) it follows that the drift uE = cE × e1/B is parallel to the perturbed
boundary. Now for this simple geometry, the guiding center drift Eq. (17) reduces to
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Ṙ⊥ = uE +
mc
eB

e1 × (uE · ∇uE + ∂uE/∂t) (47)

Figure 5: Helmholtz instability of a plasma

There is no ∇B drift since with zero pressure M = 0. In the case of the Rayleigh instability
there was a drift due to g × B which was opposite in direction for ions and electrons and therefore
resulted in surface eharge accumulation principally at the nodes of the perturbed surface. This
charge accumulation resulted in an electric field which when crossed with B, gave a drift that
increased A. The increased amplitude in turn increased the rate of charge acrumulation, hence
the rate of increase of A, etc. For the present problem of Helmholtz instability, it isclear that the
first term uE in Eq. (47) cannot produce an accumulation of charge at the interface, since uE =
cE × e1/B is the same for ions and electrons. The mechanism of the instability must therefore be
found in the second term where the direction of drift is opposite for ions and electrons. With the
E given in Eq. (46) the drift at y = 0 due to the uE · ∇uE term is

mc
eB

e1 × (uE · ∇) uE =
mc
e

Al2E2

B3 (x sin lx + y cos lx) + o
(

A2
)

, (48)

where x and y are unit vectors along the axes. The rate of free surface charge accumulation due
to ions and electrons then is the component of guiding center current normal to the interface.

∂σ/∂t = −2n|e|N · (mi + me)
(

cAl2E2/|e|B3
)
(x sin lx + y cos lx)

= −2n (mi + me)
(

cv2
0l2/B

)
A cos lx + o(A2),

(49)

where N is a unit vector normal to the interface, n is the ion or electron density, and mi and me
are ion and electron masses. The symmetry is such that the uE · ∇uE drifts above and below the
interface are additivc in their effccts on the surface charge, and this is the reason for the factor
of 2. Since the drift which is producing the charge accumulation is first order in A, the normal
vector N is needed only to zero order in A — i.e., N = y is sufficient. The situation with Rayleigh
instability is just the reverse: the drift which produces the charge accumulation is the g × B drift,
which exists with the surface unperturbed and thus is of zero order in A. Consequently in the
Rayleigh problem it is found that N must be used correct to first order in A.

It is now necessary to find the rate of increase of E′, the field due to the surface charge
accumulation. The dielectric constant

κ = 1 +
[
4πn (mi + me) c2/B2

]
∼= 4πn (mi + me) c2/B2
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must be used, and also the fact that the displacement D has a continuous normal component
and E′ a continuous tangential component across the interface. The components of E′ above the
interface are easily found to be (to lowest order in A)

E′
x =

(
2πσe−ly sin lx

)
/κ cos lx,

E′
y = 2πσe−ly/κ.

(50)

The charge density from Eq. (49) is of the form σ = σ0 cos lx, so that E′
x does not diverge at

cos lx = 0. Since the field E gives motion parallel to the boundary, it is only uE′ = cE′ × e1/B
that makes A increase. At y = 0 and lx = π/2

dA/dt = cE′ × e1/B = −cE′
x/B

or
d2 A/dt2 = −(c/B)

(
∂Ex

′/∂t
)
= − (2πc/Bκ) (dσ0/dt)

=
(

2πc2/B2κ
)

2n (mi + me) v2
0l2 A = v2

0l2 A,
(51)

Equation (51) is of the form d2 A/dt2 = ω2 A where

ω = v0l. (52)

This is just the result that would be expected from Ref. 17 and the hydrodynamic expression in
Lamb [10].

The drift term containing ∂uE/∂t in Eq. (47) equals −c (e1/B)× ∂ (E + E′) /∂t. Here the term
−c (e1/B)× ∂E/∂t does not give rise to a charge accumulation at the interface; the surface charge
density from this term due to plasma above the interface is proportional to sin lx, while that due
to plasma below is proportional to (− sin lx). If the two plasmas have the same densities n and
opposite flow velocities, the proportionality constant is the same for sin lx and (− sin lx), with
the result that there is no net surface charge. If the densities are unequal, then a net surface
charge develops which gives rise to motion of the wave, hence to a complex ω.

The drift due to the other term −c (e1/B) × ∂E′/∂t has already been accounted for by use
of the dielectric constant, since this is the term which gave the dielectric constant in the first
example. Alternatively, κ ean be set equal to unity in Eq. (50) and the drift due to ∂E′/∂t retained.
Differentiation of Eq. (50) then gives (at y = 0)

∂E′/∂t = (2π/ cos lx)(x sin lx + y cos lx) ∂σ/∂t (53)

If the ∂E′/∂t drift is now added to Eq. (49) for ∂σ/∂t and ∂E′/∂t eliminated via Eq. (53), an
equation is obtained for ∂σ/∂t. The solution for ∂σ/∂t is then substituted into Eq. (53), which
then gives the same ∂E′

x/∂t as used in Eq. (51), hence the same ω as in Eq. (52).

G. An Example of the Drift Due to ∂e1/∂t

In the preceding examples every drift in Eq. (17) has appeared with the exception of v∥(mc/eB)e1 ×
∂e1/∂t and (mc/eB)g × e1. The latter occurs in a gravitational field and therefore is in principle
present in every laboratory experiment and would also be exhibited by charged particles in the
Van Allen radiation. In practice this gravitational drift is exceedingly small compared to the other
drifts.
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The Guiding Center Approximation

The well-known drifts proportional to ∇B and v2
∥∂e1/∂s were not discussed explicitly, but are

present in the mirror machines as an azimuthal drift.
To illustrate the drift due to ∂e1/∂t, consider a magnet with large parallel pole faces as shown

in Fig. 6. Let the magnet be rotated about the Z-axis to give a ∂e1/∂t = Ωy, where y is a unit
vertor along the Y axis and Ω is the magnet’s angular velocity. Because there is a ∂B/∂t there
will in general be an E, and therefore there will also occur the drift uE = −ce1 × E/B. Of the
remaining terms in Eq. (17) the two proportional to e1 × ∂uE/∂t and to e1 × uE · ∇uE are not
obviously zero, although this will turn out to be the case. From c∇× E = −∂B/∂t one finds
∂Ez/∂x = ΩB/c at zero time, if we take Ex and Ey zero. Then Ez = ΩBx/c + Ez(x = 0). Now
Ez(x = 0) also equals Ez everywhere for Ω = 0. Let us assume there is no E in the absence of
rotation, so that Ez(x = 0) is zero. The uE drift is

uE = cE × e1/B = xΩy at zero time. (54)

Since uE is independent of y, uE · ∇uE = 0. Also ∂uE/∂t is parallel to e1, so that e1 × ∂uE/∂t = 0.
Thus both of these drift terms vanish leaving

Ṙ⊥ = cE × (e1B) + v∥(mc/eB)e1 × ∂e1/∂t = yΩx + zv∥Ω/ω. (55)

The ∂e1/∂t drift is perpendicular to the page and of magnitude v∥Ω/ω.
The parallel equation of motion (20) becomes

dv∥/dt = uE · ∂e1/∂t = Ω2x. (56)

This is just the centrifugal acceleration at a distance x from the axis of rotation.
The above example of a drift due to ∂e1/∂t does not explain geometrically why it occurs. All

the drifts in Eq. (17) come from a variation at the gyration frequency of the curvature of the
particle trajectory. This variation results in a cycloid-like motion. The reason for the variation at
the gyration frequency is different for each drift. The more familiar drifts uE and (Mc/eB)e1 ×
∇B have often been illustrated in the literature [2] and will not be discussed here. The reason that
the curvature of the trajectory varies in the presence of ∂e1/∂t is that the perpendicular velocity
|v × e1| varies as e1 changes direction. The drift velocity can be derived (except possibly for a
numerical factor) by holding e1 fixed for half a gyration period and then changing its direction
for the next half period, etc. A view along the X axis of Fig. 6 at t = 0 will appear as in Fig. 7.

Figure 6: Rotating magnet gives a ∂e1/∂t drift
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Figure 7: Geometric explanation of the ∂e1/∂t drift

Let δ be the angle between v and e1, so that v⊥ is v sin δ and v∥ is v cos δ. At the end of the
first half period (y > 0) let e1 change by ∆e1 in the y direction. For the second half period (y < 0)
v⊥ will be changed by ∆v⊥ = v cos δ∆δ = v∥∆δ. The drift velocity equals the difference in the
diameters of the two semicircles divided by the gyration period, or ω (ρ2 − ρ1) /π. Since ρ equals
v⊥/ω, ∆ρ is ∆v⊥/ω or v∥∆δ/ω. And ∆δ = Ωπ/ω. Thus the drift velocity equals v∥Ω/ω, which
in this case happens to be correct even to numerical factors.

Similar geometric derivations can be given of the other drifts containing v∥ and uE in Eq. (17).
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